Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Int. j. morphol ; 41(2): 625-633, abr. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1440306

ABSTRACT

SUMMARY: One of the reasons for acute kidney damage is renal ischemia. Nevertheless, there are limited protective and therapeutic approaches for this problem. Diacerein is an anti-inflammatory drug characterized by numerous biological activities. We aimed to determine the ameliorative impact of diacerein on renal ischemia/reperfusion injury (I/R) condition, exploring the underlying mechanisms. Twenty-four male rats were allotted into four groups (n= 6): sham group; Diacerein (DIA) group; I/R group, in which a non-crushing clamp occluded the left renal pedicle for 45 min, and the right kidney was nephrectomized for 5 min before the reperfusion process; I/R + diacerein group, injected intraperitoneally with 50 mg diacerein/kg i.m 30 minutes prior to I/R operation. Ischemia/ reperfusion was found to affect renal function and induce histopathological alterations. The flow cytometry analysis demonstrated an elevated expression of innate and mature dendritic cells in I/R renal tissues. Moreover, upregulation in the expression of the inflammatory genes (TLR4, Myd88, and NLRP3), and overexpression of the pro-inflammatory cytokines (IL-1β), apoptotic (caspase-3) and pyroptotic (caspase-1) markers were observed in I/R-experienced animals. The aforementioned deteriorations were mitigated by pre-I/R diacerein treatment. Diacerein alleviated I/R-induced inflammation and apoptosis. Thus, it could be a promising protective agent against I/R.


La isquemia renal es una de los motivos del daño renal agudo. Sin embargo, los enfoques protectores y terapéuticos para este problema son limitados. La diacereína es un fármaco antiinflamatorio caracterizado por numerosas actividades biológicas. Nuestro objetivo fue determinar el impacto de mejora de la diacereína en la condición de lesión por isquemia/ reperfusión renal (I/R), explorando los mecanismos subyacentes. Veinticuatro ratas macho se distribuyeron en cuatro grupos (n= 6): grupo simulado; grupo de diacereína (DIA); grupo I/R, en el que una pinza no aplastante ocluyó el pedículo renal izquierdo durante 45 min, y el riñón derecho fue nefrectomizado durante 5 min antes del proceso de reperfusión; Grupo I/R + diacereína, inyectado por vía intraperitoneal con 50 mg de diacereína/kg i.m. 30 min antes de la operación I/R. Se encontró que la isquemia/ reperfusión afecta la función renal e induce alteraciones histopatológicas. El análisis de citometría de flujo demostró una expresión elevada de células dendríticas innatas y maduras en tejidos renales I/R. Además, se observó una regulación positiva en la expresión de los genes inflamatorios (TLR4, Myd88 y NLRP3) y una sobreexpresión de las citoquinas proinflamatorias (IL-1β), marcadores apoptóticos (caspasa-3) y piroptóticos (caspasa-1) en animales con experiencia en I/R. Los deterioros antes mencionados fueron mitigados por el tratamiento previo a la diacereína I/R. La diacereína alivió la inflamación y la apoptosis inducidas por I/R. Por lo tanto, podría ser un agente protector prometedor contra I/R.


Subject(s)
Animals , Rats , Reperfusion Injury/drug therapy , Anthraquinones/administration & dosage , Kidney Diseases/drug therapy , Anti-Inflammatory Agents/administration & dosage , Dendritic Cells/drug effects , Reperfusion Injury/immunology , Signal Transduction , NF-kappa B/metabolism , Anthraquinones/immunology , Apoptosis/drug effects , Oxidative Stress , Toll-Like Receptor 4/metabolism , Interleukin-1beta/metabolism , Flow Cytometry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammation , Injections, Intraperitoneal , Kidney Diseases/immunology
2.
Journal of Southern Medical University ; (12): 1002-1009, 2023.
Article in Chinese | WPRIM | ID: wpr-987014

ABSTRACT

OBJECTIVE@#To explore the interaction between Tubulin beta 4B class IVb (TUBB4B) and Agtpbp1/cytosolic carboxypeptidase- like1 (CCP1) in mouse primary spermatocytes (GC-2 cells) and the role of TUBB4B in regulating the development of GC-2 cells.@*METHODS@#Lentiviral vectors were used to infect GC-2 cells to construct TUBB4B knockdown and negative control (NC-KD) cells. The stable cell lines with TUBB4B overexpression (Tubb4b-OE) and the negative control (NC-OE) cells were screened using purinomycin. RT-qPCR and Western blotting were used to verify successful cell modeling and explore the relationship between TUBB4B and CCP1 expressions in GC-2 cells. The effects of TUBB4B silencing and overexpression on the proliferation and cell cycle of GC-2 cells were evaluated using CCK8 assay and flow cytometry. The signaling pathway proteins showing significant changes in response to TUBB4B silencing or overexpression were identified using Western blotting and immunofluorescence assay and then labeled for verification at the cellular level.@*RESULTS@#Both TUBB4B silencing and overexpression in GC-2 cells caused consistent changes in the mRNA and protein expressions of CCP1 (P < 0.05). Similarly, TUBB4B expression also showed consistent changes at the mRNA and protein after CCP1 knockdown and restoration (P < 0.05). TUBB4B knockdown and overexpression had no significant effect on proliferation rate or cell cycle of GC-2 cells, but caused significant changes in the key proteins of the nuclear factor kappa-B (NF-κB) signaling pathway (p65 and p-p65) and the mitogen-activated protein kinase (MAPK) signaling pathway (ErK1/2 and p-Erk1/2) (P < 0.05); CCP1 knockdown induced significant changes in PolyE expression in GC-2 cells (P < 0.05).@*CONCLUSIONS@#TUBB4B and CCP1 interact via a mutual positive regulation mechanism in GC-2 cells. CCP-1 can deglutamize TUBB4B, and the latter is involved in the regulation of NF-κB and MAPK signaling pathways in primary spermatocytes.


Subject(s)
Animals , Male , Mice , GTP-Binding Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , RNA, Messenger , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism , Signal Transduction , Spermatocytes , Tubulin/genetics
3.
Journal of Southern Medical University ; (12): 507-515, 2023.
Article in Chinese | WPRIM | ID: wpr-986956

ABSTRACT

OBJECTIVE@#To explore the mechanism of Yifei Jianpi recipe for improving cigarette smoke- induced inflammatory injury and mucus hypersecretion in cultured human bronchial epithelial cells.@*METHODS@#Serum samples were collected from 40 SD rats treated with Yifei Jianpi recipe (n=20) or normal saline (n=20) by gavage. Cultured human bronchial epithelial 16HBE cells were stimulated with an aqueous cigarette smoke extract (CSE), followed by treatment with the collected serum at different dilutions. The optimal concentration and treatment time of CSE and the medicated serum for cell treatment were determined with CCK-8 assay. The expressions of TLR4, NF-κB, MUC5AC, MUC7, and muc8 at both the mRNA and protein levels in the treated cells were examined with RT- qPCR and Western blotting, and the effects of TLR4 gene silencing and overexpression on their expressions were assessed. The expressions of TNF-α, IL-1 β, IL-6 and IL-8 in the cells were detected using ELISA.@*RESULTS@#At the optimal concentration of 20%, treatment with the medicated serum for 24 h significantly lowered the mRNA and protein expressions of TLR4, NF- κB, MUC5AC, MUC7, and MUC8 in CSE- exposed 16HBE cells, and these effects were further enhanced by TLR4 silencing in the cells. In 16HBE cells with TLR4 overexpression, the expressions of TLR4, NF-κB, MUC5AC, MUC7, and MUC8 were significantly increased after CSE exposure and were lowered following treatment with the medicated serum (P < 0.05). The medicated serum also significantly lowered the levels of TNF-α, IL-1β, IL-6 and IL-8 in CSE-exposed 16HBE cells (P < 0.05).@*CONCLUSIONS@#In the 16HBE cell model of chronic obstructive pulmonary disease (COPD), treatment with Yifei Jianpi recipe-medicated serum improves inflammation and mucus hypersecretion possibly by reducing MUC secretion and inhibiting the TLR4/NF-κB signaling pathway.


Subject(s)
Humans , Rats , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Interleukin-8/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cigarette Smoking/adverse effects , Interleukin-6/metabolism , Rats, Sprague-Dawley , Pulmonary Disease, Chronic Obstructive/drug therapy , Signal Transduction , Epithelial Cells/metabolism , Mucus/metabolism , RNA, Messenger/metabolism
4.
Chinese Journal of Hepatology ; (12): 594-600, 2023.
Article in Chinese | WPRIM | ID: wpr-986176

ABSTRACT

Objective: To investigate the role of Maresin1 (MaR1) in hepatic ischemia-reperfusion injury (HIRI). Methods: The HIRI model was established and randomly divided into a sham operation group (Sham group), an ischemia-reperfusion group (IR group), and a MaR1 ischemia-reperfusion group (MaR1+IR group). MaR1 80ng was intravenously injected into each mouse's tail veins 0.5h before anesthesia. The left and middle hepatic lobe arteries and portal veins were opened and clamped. The blood supply was restored after 1h of ischemia. After 6h of reperfusion, the mice were sacrificed to collect blood and liver tissue samples. The Sham's group abdominal wall was only opened and closed. RAW267.4 macrophages were administered with MaR1 50ng/ml 0.5h before hypoxia, followed by hypoxia for 8h and reoxygenation for 2h, and were divided into the control group, the hypoxia-reoxygenation group (HR group), the MaR1 hypoxia-reoxygenation group (MaR1 + HR group), the Z-DEVD-FMK hypoxia-reoxygenation group (HR+Z group), the MaR1 + Z-DEVD-FMK hypoxia-reoxygenation group (MaR1 + HR + Z group), and the Con group without any treatment. Cells and the supernatant above them were collected. One-way analysis of variance was used for inter-group comparisons, and the LSD-t test was used for pairwise comparisons. Results: Compared with the Sham group, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin (IL)-1β, and IL-18 in the IR group were significantly higher (P < 0.05), with remarkable pathological changes, while the level in the MaR1 + IR group was lower than before (P < 0.05), and the pathological changes were alleviated. Compared with the Con group, the HR group had higher levels of IL-1β and IL-18 (P < 0.05), while the MaR1 + HR group had lower levels of IL-1β and IL-18 (P < 0.05). Western blot showed that the expressions of caspase-3, GSDME, and GSDME-N were significantly higher in the HR group and IR group than in the other groups; however, the expression was lower following MaR1 pretreatment. The Z-DEVD-FMK exploration mechanism was inhibited by the expression of caspase-3 in HIRI when using MaR1. Compared with the HR group, the IL-1β and IL-18 levels and the expressions of caspase-3, GSDME, and GSDME-N in the HR + Z group were decreased (P < 0.05), while the expression of nuclear factor κB was increased, but following MaR1 pretreatment, nuclear factor κB was decreased. There was no significant difference in the results between the MaR1 + H/R group and the MaR1 + H/R + Z group (P > 0.05). Conclusion: MaR1 alleviates HIRI by inhibiting NF-κB activation and caspase-3/GSDME-mediated inflammatory responses.


Subject(s)
Mice , Animals , NF-kappa B/metabolism , Interleukin-18/metabolism , Caspase 3/metabolism , Liver/pathology , Signal Transduction , Reperfusion Injury/metabolism
5.
China Journal of Chinese Materia Medica ; (24): 2530-2537, 2023.
Article in Chinese | WPRIM | ID: wpr-981329

ABSTRACT

This study aimed to observe the effect of terpinen-4-ol(T4O) on the proliferation of vascular smooth muscle cells(VSMCs) exposed to high glucose(HG) and reveal the mechanism via the Krüppel-like factor 4(KLF4)/nuclear factor kappaB(NF-κB) signaling pathway. The VSMCs were first incubated with T4O for 2 h and then cultured with HG for 48 h to establish the model of inflammatory injury. The proliferation, cell cycle, and migration rate of VSMCs were examined by MTT method, flow cytometry, and wound healing assay, respectively. The content of inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor-alpha(TNF-α) in the supernatant of VSMCs was measured by enzyme-linked immunosorbent assay(ELISA). Western blot was employed to determine the protein levels of proliferating cell nuclear antigen(PCNA), Cyclin D1, KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. The KLF4 expression in VSMCs was silenced by the siRNA technology, and then the effects of T4O on the cell cycle and protein expression of the HG-induced VSMCs were observed. The results showed that different doses of T4O inhibited the HG-induced proliferation and migration of VSMCs, increased the percentage of cells in G_1 phase, and decreased the percentage of cells in S phase, and down-regulated the protein levels of PCNA and Cyclin D1. In addition, T4O reduced the HG-induced secretion and release of the inflammatory cytokines IL-6 and TNF-α and down-regulated the expression of KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. Compared with si-NC+HG, siKLF4+HG increased the percentage of cells in G_1 phase, decreased the percentage of cells in S phase, down-regulated the expression of PCNA, Cyclin D1, and KLF4, and inhibited the activation of NF-κB signaling pathway. Notably, the combination of silencing KLF4 with T4O treatment further promoted the changes in the above indicators. The results indicate that T4O may inhibit the HG-induced proliferation and migration of VSMCs by down-regulating the level of KLF4 and inhibiting the activation of NF-κB signaling pathway.


Subject(s)
NF-kappa B/metabolism , Interleukin-18/metabolism , Proliferating Cell Nuclear Antigen/genetics , Cyclin D1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Muscle, Smooth, Vascular , Cell Proliferation , Signal Transduction , Cytokines/metabolism , Glucose/metabolism
6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 540-550, 2023.
Article in English | WPRIM | ID: wpr-982723

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons in the brain and spinal cord. One important aspect of ALS pathogenesis is superoxide dismutase 1 (SOD1) mutant-mediated mitochondrial toxicity, leading to apoptosis in neurons. This study aimed to evaluate the neural protective synergistic effects of ginsenosides Rg1 (G-Rg1) and conditioned medium (CM) on a mutational SOD1 cell model, and to explore the underlying mechanisms. We found that the contents of nerve growth factor, glial cell line-derived neurotrophic factor, and brain-derived neurotrophic factor significantly increased in CM after human umbilical cord mesenchymal stem cells (hUCMSCs) were exposed to neuron differentiation reagents for seven days. CM or G-Rg1 decreased the apoptotic rate of SOD1G93A-NSC34 cells to a certain extent, but their combination brought about the least apoptosis, compared with CM or G-Rg1 alone. Further research showed that the anti-apoptotic protein Bcl-2 was upregulated in all the treatment groups. Proteins associated with mitochondrial apoptotic pathways, such as Bax, caspase 9 (Cas-9), and cytochrome c (Cyt c), were downregulated. Furthermore, CM or G-Rg1 also inhibited the activation of the nuclear factor-kappa B (NF-κB) signaling pathway by reducing the phosphorylation of p65 and IκBα. CM/G-Rg1 or their combination also reduced the apoptotic rate induced by betulinic acid (BetA), an agonist of the NF-κB signaling pathway. In summary, the combination of CM and G-Rg1 effectively reduced the apoptosis of SOD1G93A-NSC34 cells through suppressing the NF-κB/Bcl-2 signaling pathway (Fig. 1 is a graphical representation of the abstract).


Subject(s)
Humans , NF-kappa B/metabolism , Ginsenosides/pharmacology , Amyotrophic Lateral Sclerosis/genetics , Culture Media, Conditioned/pharmacology , Superoxide Dismutase-1 , Neurodegenerative Diseases , Neurons/metabolism , Apoptosis
7.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 423-435, 2023.
Article in English | WPRIM | ID: wpr-982713

ABSTRACT

Acute lung injury (ALI) is a prevalent and severe clinical condition characterized by inflammatory damage to the lung endothelial and epithelial barriers, resulting in high incidence and mortality rates. Currently, there is a lack of safe and effective drugs for the treatment of ALI. In a previous clinical study, we observed that Jinyinqingre oral liquid (JYQR), a Traditional Chinese Medicine formulation prepared by the Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, exhibited notable efficacy in treating inflammation-related hepatitis and cholecystitis in clinical settings. However, the potential role of JYQR in ALI/acute respiratory distress syndrome (ARDS) and its anti-inflammatory mechanism remains unexplored. Thus, the present study aimed to investigate the therapeutic effects and underlying molecular mechanisms of JYQR in ALI using a mouse model of lipopolysaccharide (LPS)-induced ALI and an in vitro RAW264.7 cell model. JYQR yielded substantial improvements in LPS-induced histological alterations in lung tissues. Additionally, JYQR administration led to a noteworthy reduction in total protein levels within the BALF, a decrease in MPAP, and attenuation of pleural thickness. These findings collectively highlight the remarkable efficacy of JYQR in mitigating the deleterious effects of LPS-induced ALI. Mechanistic investigations revealed that JYQR pretreatment significantly inhibited NF-κB activation and downregulated the expressions of the downstream proteins, namely NLRP3 and GSDMD, as well as proinflammatory cytokine levels in mice and RAW2647 cells. Consequently, JYQR alleviated LPS-induced ALI by inhibiting the NF-κB/NLRP3/GSDMD pathway. JYQR exerts a protective effect against LPS-induced ALI in mice, and its mechanism of action involves the downregulation of the NF-κB/NLRP3/GSDMD inflammatory pathway.


Subject(s)
Humans , NF-kappa B/metabolism , Lipopolysaccharides/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Lung Injury/metabolism , Lung , Phosphate-Binding Proteins/therapeutic use , Pore Forming Cytotoxic Proteins/therapeutic use
8.
Journal of Zhejiang University. Science. B ; (12): 723-733, 2023.
Article in English | WPRIM | ID: wpr-982406

ABSTRACT

Ivermectin is a US Food and Drug Administration (FDA)-approved antiparasitic agent with antiviral and anti-inflammatory properties. Although recent studies reported the possible anti-inflammatory activity of ivermectin in respiratory injuries, its potential therapeutic effect on pulmonary fibrosis (PF) has not been investigated. This study aimed to explore the ability of ivermectin (0.6 mg/kg) to alleviate bleomycin-induced biochemical derangements and histological changes in an experimental PF rat model. This can provide the means to validate the clinical utility of ivermectin as a treatment option for idiopathic PF. The results showed that ivermectin mitigated the bleomycin-evoked pulmonary injury, as manifested by the reduced infiltration of inflammatory cells, as well as decreased the inflammation and fibrosis scores. Intriguingly, ivermectin decreased collagen fiber deposition and suppressed transforming growth factor-‍β1 (TGF-‍β1) and fibronectin protein expression, highlighting its anti-fibrotic activity. This study revealed for the first time that ivermectin can suppress the nucleotide-binding oligomerization domain (NOD)‍-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, as manifested by the reduced gene expression of NLRP3 and the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), with a subsequent decline in the interleukin‍-‍1β (IL‍-‍1β) level. In addition, ivermectin inhibited the expression of intracellular nuclear factor-‍κB (NF‍-‍κB) and hypoxia‑inducible factor‑1α (HIF‍-‍1α) proteins along with lowering the oxidative stress and apoptotic markers. Altogether, this study revealed that ivermectin could ameliorate pulmonary inflammation and fibrosis induced by bleomycin. These beneficial effects were mediated, at least partly, via the downregulation of TGF-‍β1 and fibronectin, as well as the suppression of NLRP3 inflammasome through modulating the expression of HIF‑1α and NF-‍κB.


Subject(s)
Animals , Rats , Anti-Inflammatory Agents , Bleomycin/toxicity , Fibronectins/metabolism , Fibrosis , Inflammasomes/metabolism , Ivermectin/adverse effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pulmonary Fibrosis/drug therapy
9.
Journal of Zhejiang University. Science. B ; (12): 650-662, 2023.
Article in English | WPRIM | ID: wpr-982405

ABSTRACT

The syndrome of dampness stagnancy due to spleen deficiency (DSSD) is relatively common globally. Although the pathogenesis of DSSD remains unclear, evidence has suggested that the gut microbiota might play a significant role. Radix Astragali, used as both medicine and food, exerts the effects of tonifying spleen and qi. Astragalus polysaccharide (APS) comprises a macromolecule substance extracted from the dried root of Radix Astragali, which has many pharmacological functions. However, whether APS mitigates the immune disorders underlying the DSSD syndrome via regulating gut microbiota and the relevant mechanism remains unknown. Here, we used DSSD rats induced by high-fat and low-protein (HFLP) diet plus exhaustive swimming, and found that APS of moderate molecular weight increased the body weight gain and immune organ indexes, decreased the levels of interleukin-1β (IL-1β), IL-6, and endotoxin, and suppressed the Toll-like receptor 4/nuclear factor-‍κB (TLR4/NF-‍κB) pathway. Moreover, a total of 27 critical genera were significantly enriched according to the linear discriminant analysis effect size (LEfSe). APS increased the diversity of the gut microbiota and changed its composition, such as reducing the relative abundance of Pseudoflavonifractor and Paraprevotella, and increasing that of Parasutterella, Parabacteroides, Clostridium XIVb, Oscillibacter, Butyricicoccus, and Dorea. APS also elevated the contents of short-chain fatty acids (SCFAs). Furthermore, the correlation analysis indicated that 12 critical bacteria were related to the body weight gain and immune organ indexes. In general, our study demonstrated that APS ameliorated the immune disorders in DSSD rats via modulating their gut microbiota, especially for some bacteria involving immune and inflammatory response and SCFA production, as well as the TLR4/NF-κB pathway. This study provides an insight into the function of APS as a unique potential prebiotic through exerting systemic activities in treating DSSD.


Subject(s)
Rats , Animals , NF-kappa B/metabolism , Spleen , Gastrointestinal Microbiome , Toll-Like Receptor 4 , Polysaccharides/pharmacology , Astragalus Plant/metabolism , Immune System Diseases/drug therapy , Body Weight
10.
Chinese Journal of Cellular and Molecular Immunology ; (12): 610-616, 2023.
Article in Chinese | WPRIM | ID: wpr-981907

ABSTRACT

Objective To investigate the effects of formononetin (FMN) on cognitive behavior and inflammation in aging rats with chronic unpredictable mild stress (CUMS). Methods SD rats aged about 70 weeks were divided into healthy control group, CUMS model group, CUMS combined with 10 mg/kg FMN group, CUMS combined with 20 mg/kg FMN group and CUMS combined with 1.8 mg/kg fluoxetine hydrochloride (Flu) group. Except for healthy control group, other groups were stimulated with CUMS and administered drugs for 28 days. Sugar water preference, forced swimming experiment and open field experiment were used to observe the emotional behavior of rats in each group. HE staining was used to observe the pathological injury degree of brain equine area. The contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were detected by the kit. The apoptosis was tested by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) in the brain tissue. The levels of tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS) and interleukin 6 (IL-6) in peripheral blood were measured by ELISA. Western blot analysis was used to detect Bcl2, Bcl2 associated X protein (BAX), cleaved caspase-9, cleaved caspase-3, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and phosphorylated nuclear factor κB p65 (p-NF-κB p65) in brain tissues. Results Compared with CUMS model group, sugar water consumption, open field activity time, open field travel distance and swimming activity time significantly increased in the CUMS combined with 20 mg/kg FMN group and the CUMS combined with 1.8 mg/kg Flu group. The number of new outarm entry increased significantly, while the number of initial arm entry and other arm entry decreased significantly. The pathological damage of brain equine area was alleviated, and the contents of 5-HT and 5-HIAA were significantly increased. The ratio of BAX/Bcl2 and the expression of cleaved caspase-9 and cleaved caspase-3 protein as well as the number of apoptotic cells were significantly decreased. The contents of TNF-α, iNOS and IL-6 were significantly decreased. The protein levels of TLR4, MyD88 and p-NF-κB p65 were significantly decreased. Conclusion FMN can inhibit the release of inflammatory factors by blocking NF-κB pathway and improve cognitive and behavioral ability of CUMS aged rats.


Subject(s)
Rats , Animals , Horses , NF-kappa B/metabolism , Signal Transduction , bcl-2-Associated X Protein/metabolism , Toll-Like Receptor 4/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Myeloid Differentiation Factor 88 , Hydroxyindoleacetic Acid/pharmacology , Serotonin/metabolism , Rats, Sprague-Dawley , Hippocampus/metabolism , Cognition
11.
Chinese Journal of Cellular and Molecular Immunology ; (12): 604-609, 2023.
Article in Chinese | WPRIM | ID: wpr-981906

ABSTRACT

Objective To investigate the protective effect of resveratrol (RSV) on improving cognitive function in severely burned rats and its possible mechanism. Methods 18 male SD rats aged 18-20 months were randomly divided into 3 groups: control group, model group and RSV group, with 6 rats in each group. After successful modeling, the rats in RSV group were gavaged once daily with RSV (20 mg/kg). Meanwhile, the rats in control group and model group were gavaged once daily with an equal volume of sodium chloride solution. After 4 weeks, the cognitive function of all rats was estimated by Step-down Test. The concentration of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) protein in serum of rats were detected by ELISA. The expression of IL-6, TNF-α mRNA and protein were estimated by real-time PCR and Western blotting. The apoptosis of hippocampal neurons was tested by terminal deoxynuclectidyl transferase-mediated dUTP-biotin nick end labeling assay (TUNEL). The expression of nuclear transcription factor-κB (NF-κB)/c-Jun N-terminal kinase (JNK) pathway-related proteins in hippocampus were assessed by Western blotting. Results Compared with the rats in model group, rats in RSV group exhibited improved cognitive function. Consistently, the rats in RSV group had a reduced concentration of TNF-α and IL-6 in serum, decreased mRNA and protein expressions of TNF-α and IL-6 in hippocampus, and decreased apoptosis rate and relative expression of p-NF-κB p65/NF-κB p65 and p-JNK/JNK in hippocampal neurons. Conclusion RSV alleviates inflammatory response and hippocampal neuronal apoptosis by inhibiting NF-κB/JNK pathway, thereby improving cognitive function in severely burned rats.


Subject(s)
Male , Animals , Rats , Resveratrol/pharmacology , Rats, Sprague-Dawley , Burns/drug therapy , Cognition/drug effects , Hippocampus/metabolism , MAP Kinase Signaling System , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/blood , Interleukin-6/blood , Neurons/drug effects , Apoptosis
12.
Chinese Journal of Cellular and Molecular Immunology ; (12): 404-409, 2023.
Article in Chinese | WPRIM | ID: wpr-981880

ABSTRACT

Objective To investigate the ameliorative effect of salidroside on diabetes retinopathy (DR) rats and its mechanism. Methods Male SD rats were randomly divided into blank group, model group, low-dose and high-dose salidroside treatment groups. Except for the blank group, other groups were modeled by intraperitoneal injection of streptozotocin. After successful modeling, treatment groups were injected intraperitoneally with [50 mg/(kg.d)] and [100 mg/(kg.d)] salidroside respectively, for 4 weeks; the blank group and model group were injected with corresponding doses of saline. ELISA was used to measure the expression levels of antioxidant-related enzyme activity and inflammatory factors in blood glucose and serum of rats in each group. Retinal tissue lesions were detected by HE staining, and the expression of vascular endothelial growth factor (VEGF) and intercellular adhesion molecule 1 (ICAM-1) in retinal tissues were detected by immunohistochemical staining. Western blot analysis was used to detect the expression of phosphatidylinositol 3 kinase (PI3K) , nuclear factor κB p65 (NF-κB p65), phosphorylated p38 MAPK (p-p38 MAPK), and phosphorylated protein kinase B (p-AKT) proteins. Results Compared with model group, salidroside could significantly reduce blood glucose level and increase body mass in DR rats. The serum levels of superoxide dismutase (SOD) and catalase (CAT) were significantly increased, while the levels of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and IL-1β were reduced. The protein expression of VEGF, ICAM-1, NF-κB p65 and p-p38 MAPK was significantly decreased, while the protein expression of PI3K and p-AKT was increased. Conclusion Salidroside can reduce DR in rats by inhibiting oxidative stress and immune inflammatory response, which may be related to the reduction of abnormal expression of VEGF and ICAM-1 and the activation of PI3K/AKT signaling pathway.


Subject(s)
Animals , Male , Rats , Blood Glucose , Diabetes Mellitus , Inflammation/metabolism , Intercellular Adhesion Molecule-1/metabolism , NF-kappa B/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Retinal Diseases , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
13.
China Journal of Orthopaedics and Traumatology ; (12): 519-524, 2023.
Article in Chinese | WPRIM | ID: wpr-981726

ABSTRACT

OBJECTIVE@#To observe the analgesic effect of Tuina by pressing and kneading the Huantiao (GB30) acupoint on rats with chronic constriction injury (CCI) and to explore the analgesic mechanism of Tuina on sciatica rats.@*METHODS@#Thirty-two SPF male SD rats weighing 180 to 220 g were randomly divided into fore groups:blank group (without any treatment), sham group (only exposed without sciatic nerve ligating), model group (sciatic nerve ligating) and Tuina group (manual intervention after lsciatic nerve ligating). The CCI model was prepared by ligating the right sciatic nerve of the rats, on the third day of modeling, the rats in the Tuina group were given pressing and kneading the Huantiao (GB30) point for 14 days, and the changes of paw withdrawal threshold(PWT), paw withdrawal latency(PWL) were measured before and on the 1st, 3rd, 7th, 10th, 14th and 17th days after modeling. The changes of sciatic functional index(SFI) were measured before and on the 1st and 17th day after modeling. The morphological changes of the sciatic nerve were observed by hematoxylin-eosin(HE) staining;and the differences in NF-κB protein expression in the right dorsal horn of the spinal cord of rats were detected.@*RESULTS@#Following modeling, there was no significant difference in PWT, PWL and SFI between the blank group and the sham group (P>0.05), but the PWT, PWL and SFI of the model group and the Tuina group decreased significantly (P<0.01). After manual intervention, the pain threshold of rats in Tuina group increased. On the 8th day of manual intervention (the 10th day after modeling), PWT in Tuina group increased significantly compared with that in model group (P<0.01). On the 5th day of manual intervention (the 7th day after modeling), the PWL of the massage group was significantly higher than that of the model group (P<0.01). The pain threshold of rats in Tuina group continued to rise with the continuous manipulation intervention. After 14 days of manipulative intervention, the sciatic nerve function index of rats in the Tuina group increased significantly(P<0.01). Compared with the blank group and sham group, the myelinated nerve fibers of sciatic nerve in the model group were disordered and the density of axons and myelin sheath was uneven. Compared with the model group, the nerve fibers of rats in the Tuina group were gradually continuous and the axons and myelin sheath were more uniform than those in the model group. Compared with the blank group and sham group, the expression of NF-κB protein in the right spinal dorsal horn of the model group was significantly increased(P<0.01). Compared with the model group, the expression of NF-κB protein in the right spinal dorsal horn of rats in Tuina group decreased significantly(P<0.01).@*CONCLUSION@#Pressing and kneading the Huantiao (GB30) point restores nerve fiber alignment;and improves the PWT、PWL and SFI in the CCI model by decreasing NF-κB p65 protein expression in the spinal dorsal horn. There fore, Tuina demmstrates an analgesic effect and improves the gait of rats with sciatica.


Subject(s)
Rats , Male , Animals , Rats, Sprague-Dawley , Sciatica/therapy , NF-kappa B/metabolism , Acupuncture Points , Spinal Cord Dorsal Horn/metabolism , Spinal Cord , Massage
14.
China Journal of Orthopaedics and Traumatology ; (12): 514-518, 2023.
Article in Chinese | WPRIM | ID: wpr-981725

ABSTRACT

OBJECTIVE@#To investigate the enhancement of macrophage chemotaxis in patients with knee osteoarthritis (KOA) and its correlation with the disease severity.@*METHODS@#Eighty patients with KOA admitted from July 2019 to June 2022 were enrolled as the observation group and divided into 29 cases of moderate group, 30 cases of severe group and 21 cases of extremely severe group. At the same time, 30 healthy subjects were included as the control group. The gene expressions of NF-κB, CXC chemokine receptor 7 (CXCR7) and CXC chemokine ligand 12 (CXCL12) in macrophages of each group were analyzed. Visual analogue scale(VAS) was used to evaluate the degree of joint pain. Joint function was evaluated by knee Joint Society Scoring system(KSS). Finally, data analysis was carried out.@*RESULTS@#The expression levels of NF-κB, CXCR7 and CXCL12 in moderate group, severe group and extreme recombination group were higher than those in control group. The VAS, the expression of NF-κB, CXCR7 and CXCL12 in the severe group and the extreme recombination group were higher than those in the moderate group, whereas KSS was lower than that in the moderate group. The VAS, expression levels of NF-κB, CXCR7 and CXCL12 in the extremely severe group were higher than those in the severe group, and KSS was lower than that in the severe group (all P<0.01). The expression levels of NF-κB, CXCR7 and CXCL12 in macrophages were positively correlated with VAS score, but negatively correlated with KSS(all P<0.01). The expression levels of NF-κB, CXCR7 and CXCL12 in macrophages were positively correlated with the severity of disease. After excluding the influence of traditional factors (gender, age and disease duration), multiple linear regression analysis further showed that the expression levels of NF-κB, CXCR7 and CXCL12 were still positively correlated with the severity of disease(all P<0.01).@*CONCLUSION@#The chemotaxis of macrophages in patients with KOA increased with the aggravation of the disease, and was related to the degree of pain and function impairment.


Subject(s)
Humans , Osteoarthritis, Knee/genetics , Chemotaxis/genetics , NF-kappa B/metabolism , Macrophages/metabolism , Receptors, CXCR/metabolism , Patient Acuity
15.
China Journal of Orthopaedics and Traumatology ; (12): 357-363, 2023.
Article in Chinese | WPRIM | ID: wpr-981697

ABSTRACT

Osteoclast (OC) is multinucleated, bone-resorbing cells originated from monocyte/macrophage lineage of cells, excessive production and abnormal activation of which could lead to many bone metabolic diseases, such as osteoporosis, osteoarthritis, etc. Autophagy, as a highly conserved catabolic process in eukaryotic cells, which plays an important role in maintaining cell homeostasis, stress damage repair, proliferation and differentiation. Recent studies have found that autophagy was also involved in the regulation of osteoclast generation and bone resorption. On the one hand, autophagy could be induced and activated by various factors in osteocalsts, such as nutrient deficiency, hypoxia, receptor activator of nuclear factor(NF)-κB ligand(RANKL), inflammatory factors, wear particles, microgravity environment, etc, different inducible factors, such as RANKL, inflammatory factors, wear particles, could interact with each other and work together. On the other hand, activated autophagy is involved in regulating various stages of osteoclast differentiation and maturation, autophagy could promote proliferation of osteoclasts, inhibiting apoptosis, and promoting differentiation, migration and bone resorption of osteoclast. The classical autophagy signaling pathway mediated by mammalian target of rapamycin complex 1(mTORC1) is currently a focus of research, and it could be regulated by upstream signalings such as phosphatidylinositol 3 kinase(PI-3K)/protein kinase B (PKB), AMP-activated protein kinase(AMPK). However, the paper found that mTORC1-mediated autophagy may play a bidirectional role in regulating differentiation and function of osteoclasts, and its underlying mechanism needs to be further ciarified. Integrin αvβ3 and Rab protein families are important targets for autophagy to play a role in osteoclast migration and bone resorption, respectively. In view of important role of osteoclast in the occurrence of various bone diseases, it is of great significance to elucidate the role of autophagy on osteoclast and its mechanism for the treatment of various bone diseases. The autophagy pathway could be used as a new therapeutic target for the treatment of clinical bone diseases such as osteoporosis.


Subject(s)
Humans , Osteoclasts , Bone Resorption/metabolism , Cell Differentiation , NF-kappa B/metabolism , Autophagy , Osteoporosis , Mechanistic Target of Rapamycin Complex 1/metabolism , RANK Ligand/metabolism
16.
China Journal of Chinese Materia Medica ; (24): 3913-3921, 2023.
Article in Chinese | WPRIM | ID: wpr-981524

ABSTRACT

The present study aimed to investigate the inhibitory effect and mechanism of Isodon terricolous-medicated serum on lipopolysaccharide(LPS)-induced hepatic stellate cell(HSC) activation. LPS-induced HSCs were divided into a blank control group, an LPS model group, a colchicine-medicated serum group, an LPS + blank serum group, an I. terricolous-medicated serum group, a Toll-like receptor 4(TLR4) blocker group, and a TLR4 blocker + I. terricolous-medicated serum group. HSC proliferation was detected by methyl thiazolyl tetrazolium(MTT) assay. Enzyme-linked immunosorbent assay(ELISA) was used to measure type Ⅰ collagen(COL Ⅰ), COL Ⅲ, transforming growth factor-β1(TGF-β1), intercellular adhesion molecule-1(ICAM-1), α-smooth muscle actin(α-SMA), vascular cell adhesion molecule-1(VCAM-1), cysteinyl aspartate-specific proteinase-1(caspase-1), and monocyte chemotactic protein-1(MCP-1). Real-time PCR(RT-PCR) was used to detect mRNA expression of TLR4, IκBα, and NOD-like receptor thermal protein domain associated protein 3(NLRP3), nuclear factor-κB(NF-κB) p65, gasdermin D(GSDMD), and apoptosis-associated speck-like protein containing a CARD(ASC) in HSCs. Western blot(WB) was used to detect the protein levels of TLR4, p-IκBα, NF-κB p65, NLRP3, ASC, and GSDMD in HSCs. The results showed that I. terricolous-medicated serum could inhibit the proliferation activity of HSCs and inhibit the secretion of COL Ⅰ, COL Ⅲ, α-SMA, TGF-β1, caspase-1, MCP-1, VCAM-1, and ICAM-1 in HSCs. Compared with the LPS model group, the I. terricolous-medicated serum group, the colchicine-medicated serum group, and the TLR4 blocker group showed down-regulated expression of p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and up-regulated expression of IκBα. Compared with the TLR4 blocker group, the TLR4 blocker + I. terricolous-medicated serum group showed decreased expression of TLR4, p-IκBα, NLRP3, NF-κB p65, GSDMD, and ASC, and increased expression of IκBα. In conclusion, I. terricolous-medicated serum down-regulates HSC activation by inhibiting the TLR4/NF-κB/NLRP3 signaling pathway.


Subject(s)
NF-kappa B/metabolism , Hepatic Stellate Cells , Transforming Growth Factor beta1/metabolism , NF-KappaB Inhibitor alpha/metabolism , Intercellular Adhesion Molecule-1/metabolism , Isodon , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Toll-Like Receptor 4/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Lipopolysaccharides/pharmacology , Signal Transduction , Colchicine/pharmacology , Caspases
17.
China Journal of Chinese Materia Medica ; (24): 202-210, 2023.
Article in Chinese | WPRIM | ID: wpr-970515

ABSTRACT

This study aims to explore the effect of Buyang Huanwu Decoction glycosides on the inflammatory response of apolipoprotein E~(-/-)(ApoE~(-/-)) mice and RAW264.7 cells through nuclear factor kappa-B(NF-κB) signaling pathway. In the in vivo experiment, ApoE~(-/-) mice were fed with high-fat diets for 12 weeks to induce the animal model of atherosclerosis, and 75 μg·mL~(-1) oxidized low-density lipoprotein(Ox-LDL) incubated RAW264.7 cells for 24 h to establish the atherosclerosis cell model. Automatic biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), Western blot, and droplet digital polymerase chain reaction(PCR) were used to determine the blood lipid levels, aortic intimal thickness, inflammatory factor content, NF-κB pathway-related proteins, and mRNA expression levels, and evaluate arterial atherosclerotic lesions and anti-atherosclerotic mechanisms of the drug. The model of atherosclerosis was successfully established in ApoE~(-/-) mice after 12 weeks of feeding with high-fat diets. In the model group, the plasma levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-C) were increased(P<0.01), the intima of the blood vessels was thickened, the levels of inflammatory factors tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were increased, and the protein and mRNA expressions of NF-κB and inhibitor of NF-κB(IκBα) were significantly increased as compared with the control group. Compared with the model group, the high-dose Buyang Huanwu Decoction glycoside group decreased the plasma levels of TC, TG, and LDL-C, reduced the plaque area and thickness and the content of inflammatory factor TNF-α, and inhibited the protein and mRNA expressions of NF-κB and IκBα, with the effect same as Buyang Huanwu Decoction. In the in vivo experiment, 75 μg·mL~(-1) Ox-LDL stimulated RAW264.7 cells for 24 h to successfully establish a foam cell model. As compared with the control group, the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα in the model group increased. Compared with the model group, the middle-dose and high-dose Buyang Huanwu Decoction glycoside groups decreased the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα. The above results show that the glycosides are the main effective substances of Buyang Huanwu Decoction against atherosclerosis, which inhibit the NF-κB pathway and reduce the inflammatory response, thus playing the role against atherosclerotic inflammation same as Buyang Huanwu Decoction.


Subject(s)
Mice , Animals , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , Tumor Necrosis Factor-alpha/metabolism , Glycosides/pharmacology , Cholesterol, LDL , Atherosclerosis/genetics , Signal Transduction , Inflammation/drug therapy , Interleukin-6 , Apolipoproteins E/pharmacology , RNA, Messenger/metabolism
18.
Chinese Journal of Oncology ; (12): 129-137, 2023.
Article in Chinese | WPRIM | ID: wpr-969815

ABSTRACT

Objective: To investigate the effect of ubiquitin mutation at position 331 of tumor necrosis factor receptor related factor 6 (TRAF6) on the biological characteristics of colorectal cancer cells and its mechanism. Methods: lentivirus wild type (pCDH-3×FLAG-TRAF6) and mutation (pCDH-3×FLAG-TRAF6-331mut) of TRAF6 gene expression plasmid with green fluorescent protein tag were used to infect colorectal cancer cells SW480 and HCT116, respectively. The infection was observed by fluorescence microscope, and the expressions of TRAF6 and TRAF6-331mut in cells was detected by western blot. Cell counting kit-8 (CCK-8) and plate cloning test were used to detect the proliferation ability of colorectal cancer cells in TRAF6 group and TRAF6-331mut group, cell scratch test to detect cell migration, Transwell chamber test to detect cell migration and invasion, immunoprecipitation to detect the ubiquitination of TRAF6 and TRAF6-331mut with ubiquitinof lysine binding sites K48 and K63. Western blot was used to detect the effects of TRAF6 and TRAF6-331mut over expression on the nuclear factor kappa-B (NF-κB) and mitogen activated protein kinase mitogen-activated protein kinase (MAPK)/activating protein-1(AP-1) signal pathway. Results: The successful infection of colorectal cancer cells was observed under fluorescence microscope. Western blot detection showed that TRAF6 and TRAF6-331mut were successfully expressed in colorectal cancer cells. The results of CCK-8 assay showed that on the fourth day, the absorbance values of HCT116 and SW480 cells in TRAF6-331mut group were 1.89±0.39 and 1.88±0.24 respectively, which were lower than those in TRAF6 group (2.09±0.12 and 2.17±0.45, P=0.036 and P=0.011, respectively). The results of plate colony formation assay showed that the number of clones of HCT116 and SW480 cells in TRAF6-331mut group was 120±14 and 85±14 respectively, which was lower than those in TRAF6 group (190±21 and 125±13, P=0.001 and P=0.002, respectively). The results of cell scratch test showed that after 48 hours, the percentage of wound healing distance of HCT116 and SW480 cells in TRAF6-331mut group was (31±12)% and (33±14)%, respectively, which was lower than those in TRAF6 group [(43±13)% and (43±7)%, P=0.005 and 0.009, respectively]. The results of Transwell migration assay showed that the migration numbers of HCT116 and SW480 cells in TRAF6-331mut group were significantly lower than those in TRAF6 group (P<0.001 and P<0.002, respectively). The results of Transwell invasion assay showed that the number of membrane penetration of HCT116 and SW480 cells in TRAF6-331mut group was significantly lower than those in TRAF6 group (P=0.008 and P=0.009, respectively). The results of immunoprecipitation detection showed that the ubiquitin protein of K48 chain pulled by TRAF6-331mut was lower than that of wild type TRAF6 in 293T cells co-transfected with K48 (0.57±0.19), and the ubiquitin protein of K63 chain pulled down by TRAF6-331mut in 293T cells co-transfected with K63 was lower than that of wild type TRAF6 (0.89±0.08, P<0.001). Western blot assay showed that the protein expression levels of NF-κB, p-NF-κB and p-AP-1 in TRAF6-331mut-HCT116 cells were 0.63±0.08, 0.42±0.08 and 0.60±0.07 respectively, which were lower than those in TRAF6-HCT116 cells (P=0.002, P<0.001 and P<0.001, respectively). The expression level of AP-1 protein in TRAF6-HCT116 cells was 0.89±0.06, compared with that in TRAF6-HCT116 cells. The difference was not statistically significant (P>0.05). The protein expression levels of NF-κB, p-NF-κB and p-AP-1 in TRAF6-331mut-SW480 cells were 0.50±0.06, 0.51±0.04, 0.48±0.02, respectively, which were lower than those in TRAF6-SW480 cells (all P<0.001). There was no significant difference in AP-1 protein expression between TRAF6-331mut-SW480 cells and TRAF6-SW480 cells. Conclusion: The ubiquitin site mutation of TRAF6 gene at 331 may prevent the binding of TRAF6 and ubiquitin lysine sites K48 and K63, and then affect the expressions of proteins related to downstream NF-κB and MAPK/AP-1 signal pathways, and inhibit the proliferation, migration and invasion of colorectal cancer cells.


Subject(s)
Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/pathology , Lysine/metabolism , NF-kappa B/metabolism , TNF Receptor-Associated Factor 6/metabolism , Transcription Factor AP-1/metabolism , Ubiquitin/metabolism
19.
Biol. Res ; 56: 5-5, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1429906

ABSTRACT

BACKGROUND: Alpha-kinase 1 (ALPK1) is a master regulator in inflammation and has been proved to promote renal fibrosis by promoting the production of IL-1ß in diabetic nephropathy (DN) mice. Pyroptosis is involved in high glucose (HG)-induced tubular cells injury, characterized by activation of Gasdermin D (GSDMD) and the release of IL-1ß and IL-18, resulting in inflammatory injury in DN. It is reasonable to assume that ALPK1 is involved in pyroptosis-related tubular injury in DN. However, the mechanism remains poorly defined. METHODS: Immunohistochemistry (IHC) staining was performed to detect the expression of pyroptosis- and fibrosis-related proteins in renal sections of DN patients and DN mice. DN models were induced through injection of streptozotocin combined with a high-fat diet. Protein levels of ALPK1, NF-κB, Caspase-1, GSDMD, IL-1ß, IL-18 and α-SMA were detected by Western blot. HK-2 cells treated with high-glucose (HG) served as an in vitro model. ALPK1 small interfering RNA (siRNA) was transfected into HK-2 cells to down-regulate ALPK1. The pyroptosis rates were determined by flow cytometry. The concentrations of IL-1ß and IL-18 were evaluated by ELISA kits. Immunofluorescence staining was used to observe translocation of NF-κB and GSDMD. RESULTS: The heat map of differentially expressed genes showed that ALPK1, Caspase-1 and GSDMD were upregulated in the DN group. The expression levels of ALPK1, Caspase-1, GSDMD and CD68 were increased in renal biopsy tissues of DN patients by IHC. ALPK1expression and CD68+ macrophages were positively correlated with tubular injury in DN patients. Western blot analysis showed increased expressions of ALPK1, phospho-NF-κB P65, GSDMD-NT, and IL-1ß in renal tissues of DN mice and HK-2 cells, accompanied with increased renal fibrosis-related proteins (FN, α-SMA) and macrophages infiltration in interstitial areas. Inhibition of ALPK1 attenuated HG-induced upregulation expressions of NF-κB, pyroptosis-related proteins Caspase-1, GSDMD-NT, IL-1ß, IL-18, α-SMA, and pyroptosis level in HK-2 cells. Also, the intensity and nuclear translocation of NF-κB and membranous translocation of GSDMD were ameliorated in HG-treated HK-2 cells after treatment with ALPK1 siRNA. CONCLUSIONS: Our data suggest that ALPK1/NF-κB pathway initiated canonical caspase-1-GSDMD pyroptosis pathway, resulting in tubular injury and interstitial inflammation of DN.


Subject(s)
Animals , Mice , Diabetes Mellitus , Diabetic Nephropathies , Fibrosis , NF-kappa B/metabolism , Caspases , Interleukin-18 , RNA, Small Interfering , Pyroptosis , Glucose , Inflammation
20.
Biol. Res ; 56: 18-18, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1439485

ABSTRACT

BACKGROUND: Isolation of nuclei or nuclear proteins is a prerequisite for western blot, nuclear proteome profiling, and other evaluations of nuclear proteins. Here, we developed a simple method for in situ isolation of nuclei or nuclear proteins by in situ removing the extranuclear part of adherent cells via a classical nonionic detergent triton X-100. RESULTS: First, the feasibility of our method was confirmed by confocal microscopy, atomic force microscopy, scanning electron microscopy, dynamic light scattering, immunofluorescence imaging, and time-lapse dynamic observation. Next, the optimal concentration range (approximately 0.1-1% for ~ 10 min) of triton X-100 and the optimal treatment time (< 30 min) of 0.1-1% Triton X-100 for our method were determined via western blotting of eight extra-/ intra-nuclear proteins. Subsequently, the effectiveness, sensitivity, and cytoplasmic contamination of our method were tested by investigating the levels of phosphorylated p65 (a NF-κB subunit) in the nuclei of endothelial or tumor cells treated with/without lipopolysaccharide (LPS) via western blotting and by comparing with a commercial nuclear protein extraction kit (a classical detergent-based method). The data show that compared with the commercial kit our method obtained a higher yield of total nuclear proteins, a higher pP65 level in both control and LPS groups, and much lower content of GAPDH (as a reference for cytoplasmic contamination) in nuclei. CONCLUSIONS: The in situ isolation of nuclei or nuclear proteins from adherent cells in this study is a simple, effective method with less cytoplasmic contamination. This method/strategy has the potential of improving the quality of downstream evaluations including western blotting and proteomic profiling.


Subject(s)
Nuclear Proteins , Lipopolysaccharides , NF-kappa B/metabolism , Octoxynol/pharmacology , Proteomics , Detergents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL